(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(s(0), g(x)) → f(x, g(x))
g(s(x)) → g(x)
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
g(s(x)) →+ g(x)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [x / s(x)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(s(0'), g(x)) → f(x, g(x))
g(s(x)) → g(x)
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
f(s(0'), g(x)) → f(x, g(x))
g(s(x)) → g(x)
Types:
f :: 0':s → g → f
s :: 0':s → 0':s
0' :: 0':s
g :: 0':s → g
hole_f1_0 :: f
hole_0':s2_0 :: 0':s
hole_g3_0 :: g
gen_0':s4_0 :: Nat → 0':s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f,
gThey will be analysed ascendingly in the following order:
g < f
(8) Obligation:
TRS:
Rules:
f(
s(
0'),
g(
x)) →
f(
x,
g(
x))
g(
s(
x)) →
g(
x)
Types:
f :: 0':s → g → f
s :: 0':s → 0':s
0' :: 0':s
g :: 0':s → g
hole_f1_0 :: f
hole_0':s2_0 :: 0':s
hole_g3_0 :: g
gen_0':s4_0 :: Nat → 0':s
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
g, f
They will be analysed ascendingly in the following order:
g < f
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
g(
gen_0':s4_0(
+(
1,
n6_0))) →
*5_0, rt ∈ Ω(n6
0)
Induction Base:
g(gen_0':s4_0(+(1, 0)))
Induction Step:
g(gen_0':s4_0(+(1, +(n6_0, 1)))) →RΩ(1)
g(gen_0':s4_0(+(1, n6_0))) →IH
*5_0
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
f(
s(
0'),
g(
x)) →
f(
x,
g(
x))
g(
s(
x)) →
g(
x)
Types:
f :: 0':s → g → f
s :: 0':s → 0':s
0' :: 0':s
g :: 0':s → g
hole_f1_0 :: f
hole_0':s2_0 :: 0':s
hole_g3_0 :: g
gen_0':s4_0 :: Nat → 0':s
Lemmas:
g(gen_0':s4_0(+(1, n6_0))) → *5_0, rt ∈ Ω(n60)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
f
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(13) Obligation:
TRS:
Rules:
f(
s(
0'),
g(
x)) →
f(
x,
g(
x))
g(
s(
x)) →
g(
x)
Types:
f :: 0':s → g → f
s :: 0':s → 0':s
0' :: 0':s
g :: 0':s → g
hole_f1_0 :: f
hole_0':s2_0 :: 0':s
hole_g3_0 :: g
gen_0':s4_0 :: Nat → 0':s
Lemmas:
g(gen_0':s4_0(+(1, n6_0))) → *5_0, rt ∈ Ω(n60)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
(14) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
g(gen_0':s4_0(+(1, n6_0))) → *5_0, rt ∈ Ω(n60)
(15) BOUNDS(n^1, INF)
(16) Obligation:
TRS:
Rules:
f(
s(
0'),
g(
x)) →
f(
x,
g(
x))
g(
s(
x)) →
g(
x)
Types:
f :: 0':s → g → f
s :: 0':s → 0':s
0' :: 0':s
g :: 0':s → g
hole_f1_0 :: f
hole_0':s2_0 :: 0':s
hole_g3_0 :: g
gen_0':s4_0 :: Nat → 0':s
Lemmas:
g(gen_0':s4_0(+(1, n6_0))) → *5_0, rt ∈ Ω(n60)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
g(gen_0':s4_0(+(1, n6_0))) → *5_0, rt ∈ Ω(n60)
(18) BOUNDS(n^1, INF)